Observational vs. Experimental Study: A Comprehensive Guide

Explore the fundamental disparities between experimental and observational studies in this comprehensive guide by Santos Research Center, Corp. Uncover concepts such as control group, random sample, cohort studies, response variable, and explanatory variable that shape the foundation of these methodologies. Discover the significance of randomized controlled trials and case control studies, examining causal relationships and the role of dependent variables and independent variables in research designs.

This enlightening exploration also delves into the meticulous scientific study process, involving survey members, systematic reviews, and statistical analyses. Investigate the careful balance of control group and treatment group dynamics, highlighting how researchers meticulously assign variables and analyze statistical patterns to discern meaningful insights. From dissecting issues like lung cancer to understanding sleep patterns, this guide emphasizes the precision of controlled experiments and controlled trials, where variables are isolated and scrutinized, paving the way for a deeper comprehension of the world through empirical research.

Introduction to Observational and Experimental Studies

These two studies are the cornerstones of scientific inquiry, each offering a distinct approach to unraveling the mysteries of the natural world.

Observational studies allow us to observe, document, and gather data without direct intervention. They provide a means to explore real-world scenarios and trends, making them valuable when manipulating variables is not feasible or ethical. From surveys to meticulous observations, these studies shed light on existing conditions and relationships.

Experimental studies , in contrast, put researchers in the driver's seat. They involve the deliberate manipulation of variables to understand their impact on specific outcomes. By controlling the conditions, experimental studies establish causal relationships, answering questions of causality with precision. This approach is pivotal for hypothesis testing and informed decision-making.

At Santos Research Center, Corp., we recognize the importance of both observational and experimental studies. We employ these methodologies in our diverse research projects to ensure the highest quality of scientific investigation and to answer a wide range of research questions.

Observational Studies: A Closer Look

In our exploration of research methodologies, let's zoom in on observational research studies—an essential facet of scientific inquiry that we at Santos Research Center, Corp., expertly employ in our diverse research projects.

What is an Observational Study?

Observational research studies involve the passive observation of subjects without any intervention or manipulation by researchers. These studies are designed to scrutinize the relationships between variables and test subjects, uncover patterns, and draw conclusions grounded in real-world data.

Researchers refrain from interfering with the natural course of events in controlled experiment. Instead, they meticulously gather data by keenly observing and documenting information about the test subjects and their surroundings. This approach permits the examination of variables that cannot be ethically or feasibly manipulated, making it particularly valuable in certain research scenarios.

Types of Observational Studies

Now, let's delve into the various forms that observational studies can take, each with its distinct characteristics and applications.

Cohort Studies:  A cohort study is a type of observational study that entails tracking one group of individuals over an extended period. Its primary goal is to identify potential causes or risk factors for specific outcomes or treatment group. Cohort studies provide valuable insights into the development of conditions or diseases and the factors that influence them.

Case-Control Studies:  Case-control studies, on the other hand, involve the comparison of individuals with a particular condition or outcome to those without it (the control group). These studies aim to discern potential causal factors or associations that may have contributed to the development of the condition under investigation.

Cross-Sectional Studies:  Cross-sectional studies take a snapshot of a diverse group of individuals at a single point in time. By collecting data from this snapshot, researchers gain insights into the prevalence of a specific condition or the relationships between variables at that precise moment. Cross-sectional studies are often used to assess the health status of the different groups within a population or explore the interplay between various factors.

Advantages and Limitations of Observational Studies

Observational studies, as we've explored, are a vital pillar of scientific research, offering unique insights into real-world phenomena. In this section, we will dissect the advantages and limitations that characterize these studies, shedding light on the intricacies that researchers grapple with when employing this methodology.

Advantages: One of the paramount advantages of observational studies lies in their utilization of real-world data. Unlike controlled experiments that operate in artificial settings, observational studies embrace the complexities of the natural world. This approach enables researchers to capture genuine behaviors, patterns, and occurrences as they unfold. As a result, the data collected reflects the intricacies of real-life scenarios, making it highly relevant and applicable to diverse settings and populations.

Moreover, in a randomized controlled trial, researchers looked to randomly assign participants to a group. Observational studies excel in their capacity to examine long-term trends. By observing one group of subjects over extended periods, research scientists gain the ability to track developments, trends, and shifts in behavior or outcomes. This longitudinal perspective is invaluable when studying phenomena that evolve gradually, such as chronic diseases, societal changes, or environmental shifts. It allows for the detection of subtle nuances that may be missed in shorter-term investigations.

Limitations: However, like any research methodology, observational studies are not without their limitations. One significant challenge of statistical study lies in the potential for biases. Since researchers do not intervene in the subjects' experiences, various biases can creep into the data collection process. These biases may arise from participant self-reporting, observer bias, or selection bias in random sample, among others. Careful design and rigorous data analysis are crucial for mitigating these biases.

Another limitation is the presence of confounding variables. In observational studies, it can be challenging to isolate the effect of a specific variable from the myriad of other factors at play. These confounding variables can obscure the true relationship between the variables of interest, making it difficult to establish causation definitively. Research scientists must employ statistical techniques to control for or adjust these confounding variables.

Additionally, observational studies face constraints in their ability to establish causation. While they can identify associations and correlations between variables, they cannot prove causality or causal relationship. Establishing causation typically requires controlled experiments where researchers can manipulate independent variables systematically. In observational studies, researchers can only infer potential causation based on the observed associations.

Experimental Studies: Delving Deeper

In the intricate landscape of scientific research, we now turn our gaze toward experimental studies—a dynamic and powerful method that Santos Research Center, Corp. skillfully employs in our pursuit of knowledge.

What is an Experimental Study?

While some studies observe and gather data passively, experimental studies take a more proactive approach. Here, researchers actively introduce an intervention or treatment to an experiment group study its effects on one or more variables. This methodology empowers researchers to manipulate independent variables deliberately and examine their direct impact on dependent variables.

Experimental research are distinguished by their exceptional ability to establish cause-and-effect relationships. This invaluable characteristic allows researchers to unlock the mysteries of how one variable influences another, offering profound insights into the scientific questions at hand. Within the controlled environment of an experimental study, researchers can systematically test hypotheses, shedding light on complex phenomena.

Key Features of Experimental Studies

Central to statistical analysis, the rigor and reliability of experimental studies are several key features that ensure the validity of their findings.

Randomized Controlled Trials:  Randomization is a critical element in experimental studies, as it ensures that subjects are assigned to groups in a random assignment. This randomly assigned allocation minimizes the risk of unintentional biases and confounding variables, strengthening the credibility of the study's outcomes.

Control Groups:  Control groups play a pivotal role in experimental studies by serving as a baseline for comparison. They enable researchers to assess the true impact of the intervention being studied. By comparing the outcomes of the intervention group to those of survey members of the control group, researchers can discern whether the intervention caused the observed changes.

Blinding:  Both single-blind and double-blind techniques are employed in experimental studies to prevent biases from influencing the study or controlled trial's outcomes. Single-blind studies keep either the subjects or the researchers unaware of certain aspects of the study, while double-blind studies extend this blindness to both parties, enhancing the objectivity of the study.

These key features work in concert to uphold the integrity and trustworthiness of the results generated through experimental studies.

Advantages and Limitations of Experimental Studies

As with any research methodology, this one comes with its unique set of advantages and limitations.

Advantages:  These studies offer the distinct advantage of establishing causal relationships between two or more variables together. The controlled environment allows researchers to exert authority over variables, ensuring that changes in the dependent variable can be attributed to the independent variable. This meticulous control results in high-quality, reliable data that can significantly contribute to scientific knowledge.

Limitations:  However, experimental ones are not without their challenges. They may raise ethical concerns, particularly when the interventions involve potential risks to subjects. Additionally, their controlled nature can limit their real-world applicability, as the conditions in experiments may not accurately mirror those in the natural world. Moreover, executing an experimental study in randomized controlled, often demands substantial resources, with other variables including time, funding, and personnel.

Observational vs Experimental: A Side-by-Side Comparison

Having previously examined observational and experimental studies individually, we now embark on a side-by-side comparison to illuminate the key distinctions and commonalities between these foundational research approaches.

Key Differences and Notable Similarities

Methodologies

  • Observational Studies : Characterized by passive observation, where researchers collect data without direct intervention, allowing the natural course of events to unfold.
  • Experimental Studies : Involve active intervention, where researchers deliberately manipulate variables to discern their impact on specific outcomes, ensuring control over the experimental conditions.
  • Observational Studies : Designed to identify patterns, correlations, and associations within existing data, shedding light on relationships within real-world settings.
  • Experimental Studies : Geared toward establishing causality by determining the cause-and-effect relationships between variables, often in controlled laboratory environments.
  • Observational Studies : Yield real-world data, reflecting the complexities and nuances of natural phenomena.
  • Experimental Studies : Generate controlled data, allowing for precise analysis and the establishment of clear causal connections.

Observational studies excel at exploring associations and uncovering patterns within the intricacies of real-world settings, while experimental studies shine as the gold standard for discerning cause-and-effect relationships through meticulous control and manipulation in controlled environments. Understanding these differences and similarities empowers researchers to choose the most appropriate method for their specific research objectives.

When to Use Which: Practical Applications

The decision to employ either observational or experimental studies hinges on the research objectives at hand and the available resources. Observational studies prove invaluable when variable manipulation is impractical or ethically challenging, making them ideal for delving into long-term trends and uncovering intricate associations between certain variables (response variable or explanatory variable). On the other hand, experimental studies emerge as indispensable tools when the aim is to definitively establish causation and methodically control variables.

At Santos Research Center, Corp., our approach to both scientific study and methodology is characterized by meticulous consideration of the specific research goals. We recognize that the quality of outcomes hinges on selecting the most appropriate method of research study. Our unwavering commitment to employing both observational and experimental research studies further underscores our dedication to advancing scientific knowledge across diverse domains.

Conclusion: The Synergy of Experimental and Observational Studies in Research

In conclusion, both observational and experimental studies are integral to scientific research, offering complementary approaches with unique strengths and limitations. At Santos Research Center, Corp., we leverage these methodologies to contribute meaningfully to the scientific community.

Explore our projects and initiatives at Santos Research Center, Corp. by visiting our website or contacting us at (813) 249-9100, where our unwavering commitment to rigorous research practices and advancing scientific knowledge awaits.

Recent Posts

Join an Alzheimer's clinical trial at Santos Research Center. Discover treatment options, receive expert care, and help advance research. Apply for our paid trial today!

Discover the causes and health risks of obesity, plus explore new clinical trials at Santos Research Center offering innovative treatment options.

Learn about Bipolar I Disorder symptoms, treatments, and clinical trials at Santos Research Center. Explore new treatment options - join our trial today!

At Santos Research Center, a medical research facility dedicated to advancing TBI treatments, we emphasize the importance of tailored rehabilitation...

Learn about COVID-19 rebound after Paxlovid, its symptoms, causes, and management strategies. Join our study at Santos Research Center. Apply now!

Learn everything about Respiratory Syncytial Virus (RSV), from symptoms and diagnosis to treatment and prevention. Stay informed and protect your health with...

Discover key insights on Alzheimer's disease, including symptoms, stages, and care tips. Learn how to manage the condition and find out how you can...

Santos Research Center, Corp. is a research facility conducting paid clinical trials, in partnership with major pharmaceutical companies & CROs. We work with patients from across the Tampa Bay area.

Contact Details

Navigation menu.

helpful professor logo

Experiment vs Observational Study: Similarities & Differences

Experiment vs Observational Study: Similarities & Differences

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

experiment vs observational study, explained below

An experiment involves the deliberate manipulation of variables to observe their effect, while an observational study involves collecting data without interfering with the subjects or variables under study.

This article will explore both, but let’s start with some quick explanations:

  • Experimental Study : An experiment is a research design wherein an investigator manipulates one or more variables to establish a cause-effect relationship (Tan, 2022). For example, a pharmaceutical company may conduct an experiment to find out if a new medicine for diabetes is effective by administering it to a selected group (experimental group), while not administering it to another group (control group).
  • Observational Study : An observational study is a type of research wherein the researcher observes characteristics and measures variables of interest in a subset of a population, but does not manipulate or intervene (Atkinson et al., 2021). An example may be a sociologist who conducts a cross-sectional survey of the population to determine health disparities across different income groups. 

Experiment vs Observational Study

1. experiment.

An experiment is a research method characterized by a high degree of experimental control exerted by the researcher. In the context of academia, it allows for the testing of causal hypotheses (Privitera, 2022).

When conducting an experiment, the researcher first formulates a hypothesis , which is a predictive statement about the potential relationship between at least two variables.

For instance, a psychologist may want to test the hypothesis that participation in physical exercise ( independent variable ) improves the cognitive abilities (dependent variable) of the elderly.

In an experiment, the researcher manipulates the independent variable(s) and then observes the effects on the dependent variable(s). This method of research involves two or more comparison groups—an experimental group that is subjected to the variable being tested and a control group that is not (Sampselle, 2012).

For instance, in the physical exercise study noted above, the psychologist would administer a physical exercise regime to an experimental group of elderly people, while a control group would continue with their usual lifestyle activities .

One of the unique features of an experiment is random assignment . Participants are randomly allocated to either the experimental or control groups to ensure that every participant has an equal chance of being in either group. This reduces the risk of confounding variables and increases the likelihood that the results are attributable to the independent variable rather than another factor (Eich, 2014).

For instance, in the physical exercise example, the psychologist would randomly assign participants to the experimental or control group to reduce the potential impact of external variables such as diet or sleep patterns.

1. Impacts of Films on Happiness: A psychologist might create an experimental study where she shows participants either a happy, sad, or neutral film (independent variable) then measures their mood afterward (dependent variable). Participants would be randomly assigned to one of the three film conditions.

2. Impacts of Exercise on Weight Loss: In a fitness study, a trainer could investigate the impact of a high-intensity interval training (HIIT) program on weight loss. Half of the participants in the study are randomly selected to follow the HIIT program (experimental group), while the others follow a standard exercise routine (control group).

3. Impacts of Veganism on Cholesterol Levels: A nutritional experimenter could study the effects of a particular diet, such as veganism, on cholesterol levels. The chosen population gets assigned either to adopt a vegan diet (experimental group) or stick to their usual diet (control group) for a specific period, after which cholesterol levels are measured.

Read More: Examples of Random Assignment

Strengths and Weaknesses

Read More: Experimental Research Examples

2. Observational Study

Observational research is a non-experimental research method in which the researcher merely observes the subjects and notes behaviors or responses that occur (Ary et al., 2018).

This approach is unintrusive in that there is no manipulation or control exerted by the researcher. For instance, a researcher could study the relationships between traffic congestion and road rage by just observing and recording behaviors at a set of busy traffic lights, without applying any control or altering any variables.

In observational studies, the researcher distinguishes variables and measures their values as they naturally occur. The goal is to capture naturally occurring behaviors , conditions, or events (Ary et al., 2018).

For example, a sociologist might sit in a cafe to observe and record interactions between staff and customers in order to examine social and occupational roles .

There is a significant advantage of observational research in that it provides a high level of ecological validity – the extent to which the data collected reflects real-world situations – as the behaviors and responses are observed in a natural setting without experimenter interference (Holleman et al., 2020)

However, the inability to control various factors that might influence the observations may expose these studies to potential confounding bias , a consideration researchers must take into account (Schober & Vetter, 2020).

1. Behavior of Animals in the Wild: Zoologists often use observational studies to understand the behaviors and interactions of animals in their natural habitats. For instance, a researcher could document the social structure and mating behaviors of a wolf pack over a period of time.

2. Impact of Office Layout on Productivity: A researcher in organizational psychology might observe how different office layouts affect staff productivity and collaboration. This involves the observation and recording of staff interactions and work output without altering the office setting.

3. Foot Traffic and Retail Sales: A market researcher might conduct an observational study on how foot traffic (the number of people passing by a store) impacts retail sales. This could involve observing and documenting the number of walk-ins, time spent in-store, and purchase behaviors.

Read More: Observational Research Examples

Experimental and Observational Study Similarities and Differences

Experimental and observational research both have their place – one is right for one situation, another for the next.

Experimental research is best employed when the aim of the study is to establish cause-and-effect relationships between variables – that is, when there is a need to determine the impact of specific changes on the outcome (Walker & Myrick, 2016).

One of the standout features of experimental research is the control it gives to the researcher, who dictates how variables should be changed and assigns participants to different conditions (Privitera, 2022). This makes it an excellent choice for medical or pharmaceutical studies, behavioral interventions, and any research where hypotheses concerning influence and change need to be tested.

For example, a company might use experimental research to understand the effects of staff training on job satisfaction and productivity.

Observational research , on the other hand, serves best when it’s vital to capture the phenomena in their natural state, without intervention, or when ethical or practical considerations prevent the researcher from manipulating the variables of interest (Creswell & Poth, 2018).

It is the method of choice when the interest of the research lies in describing what is, rather than altering a situation to see what could be (Atkinson et al., 2021).

This approach might be utilized in studies that aim to describe patterns of social interaction, daily routines, user experiences, and so on. A real-world example of observational research could be a study examining the interactions and learning behaviors of students in a classroom setting.

I’ve demonstrated their similarities and differences a little more in the table below:

Experimental and observational research each have their place, depending upon the study. Importantly, when selecting your approach, you need to reflect upon your research goals and objectives, and select from the vast range of research methodologies , which you can read up on in my next article, the 15 types of research designs .

Ary, D., Jacobs, L. C., Irvine, C. K. S., & Walker, D. (2018). Introduction to research in education . London: Cengage Learning.

Atkinson, P., Delamont, S., Cernat, A., Sakshaug, J. W., & Williams, R. A. (2021). SAGE research methods foundations . New York: SAGE Publications Ltd.

Creswell, J.W., and Poth, C.N. (2018). Qualitative Inquiry and Research Design: Choosing among Five Approaches . New York: Sage Publications.

Eich, E. (2014). Business Research Methods: A Radically Open Approach . Frontiers Media SA.

Holleman, G. A., Hooge, I. T., Kemner, C., & Hessels, R. S. (2020). The ‘real-world approach’and its problems: A critique of the term ecological validity. Frontiers in Psychology , 11 , 721. doi: https://doi.org/10.3389/fpsyg.2020.00721  

Privitera, G. J. (2022). Research methods for the behavioral sciences . Sage Publications.

Sampselle, C. M. (2012). The Science and Art of Nursing Research . South University Online Press.

Schober, P., & Vetter, T. R. (2020). Confounding in observational research. Anesthesia & Analgesia , 130 (3), 635.

Tan, W. C. K. (2022). Research methods: A practical guide for students and researchers . World Scientific.

Walker, D., and Myrick, F. (2016). Grounded Theory: An Exploration of Process and Procedure . New York: Qualitative Health Research.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Experimental Studies and Observational Studies

  • Reference work entry
  • First Online: 01 January 2022
  • pp 1748–1756
  • Cite this reference work entry

difference between observational study and experimental study

  • Martin Pinquart 3  

972 Accesses

1 Citations

Experimental studies: Experiments, Randomized controlled trials (RCTs) ; Observational studies: Non-experimental studies, Non-manipulation studies, Naturalistic studies

Definitions

The experimental study is a powerful methodology for testing causal relations between one or more explanatory variables (i.e., independent variables) and one or more outcome variables (i.e., dependent variable). In order to accomplish this goal, experiments have to meet three basic criteria: (a) experimental manipulation (variation) of the independent variable(s), (b) randomization – the participants are randomly assigned to one of the experimental conditions, and (c) experimental control for the effect of third variables by eliminating them or keeping them constant.

In observational studies, investigators observe or assess individuals without manipulation or intervention. Observational studies are used for assessing the mean levels, the natural variation, and the structure of variables, as well as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Atalay K, Barrett GF (2015) The impact of age pension eligibility age on retirement and program dependence: evidence from an Australian experiment. Rev Econ Stat 97:71–87. https://doi.org/10.1162/REST_a_00443

Article   Google Scholar  

Bergeman L, Boker SM (eds) (2016) Methodological issues in aging research. Psychology Press, Hove

Google Scholar  

Byrkes CR, Bielak AMA (under review) Evaluation of publication bias and statistical power in gerontological psychology. Manuscript submitted for publication

Campbell DT, Stanley JC (1966) Experimental and quasi-experimental designs for research. Rand-McNally, Chicago

Carpenter D (2010) Reputation and power: organizational image and pharmaceutical regulation at the FDA. Princeton University Press, Princeton

Cavanaugh JC, Blanchard-Fields F (2019) Adult development and aging, 8th edn. Cengage, Boston

Fölster M, Hess U, Hühnel I et al (2015) Age-related response bias in the decoding of sad facial expressions. Behav Sci 5:443–460. https://doi.org/10.3390/bs5040443

Freund AM, Isaacowitz DM (2013) Beyond age comparisons: a plea for the use of a modified Brunswikian approach to experimental designs in the study of adult development and aging. Hum Dev 56:351–371. https://doi.org/10.1159/000357177

Haslam C, Morton TA, Haslam A et al (2012) “When the age is in, the wit is out”: age-related self-categorization and deficit expectations reduce performance on clinical tests used in dementia assessment. Psychol Aging 27:778–784. https://doi.org/10.1037/a0027754

Institute for Social Research (2018) The health and retirement study. Aging in the 21st century: Challenges and opportunities for americans. Survey Research Center, University of Michigan

Jung J (1971) The experimenter’s dilemma. Harper & Row, New York

Leary MR (2001) Introduction to behavioral research methods, 3rd edn. Allyn & Bacon, Boston

Lindenberger U, Scherer H, Baltes PB (2001) The strong connection between sensory and cognitive performance in old age: not due to sensory acuity reductions operating during cognitive assessment. Psychol Aging 16:196–205. https://doi.org/10.1037//0882-7974.16.2.196

Löckenhoff CE, Carstensen LL (2004) Socioemotional selectivity theory, aging, and health: the increasingly delicate balance between regulating emotions and making tough choices. J Pers 72:1395–1424. https://doi.org/10.1111/j.1467-6494.2004.00301.x

Maxwell SE (2015) Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am Psychol 70:487–498. https://doi.org/10.1037/a0039400

Menard S (2002) Longitudinal research (2nd ed.). Sage, Thousand Oaks, CA

Mitchell SJ, Scheibye-Knudsen M, Longo DL et al (2015) Animal models of aging research: implications for human aging and age-related diseases. Ann Rev Anim Biosci 3:283–303. https://doi.org/10.1146/annurev-animal-022114-110829

Moher D (1998) CONSORT: an evolving tool to help improve the quality of reports of randomized controlled trials. JAMA 279:1489–1491. https://doi.org/10.1001/jama.279.18.1489

Oxford Centre for Evidence-Based Medicine (2011) OCEBM levels of evidence working group. The Oxford Levels of Evidence 2. Available at: https://www.cebm.net/category/ebm-resources/loe/ . Retrieved 2018-12-12

Patten ML, Newhart M (2018) Understanding research methods: an overview of the essentials, 10th edn. Routledge, New York

Piccinin AM, Muniz G, Sparks C et al (2011) An evaluation of analytical approaches for understanding change in cognition in the context of aging and health. J Geront 66B(S1):i36–i49. https://doi.org/10.1093/geronb/gbr038

Pinquart M, Silbereisen RK (2006) Socioemotional selectivity in cancer patients. Psychol Aging 21:419–423. https://doi.org/10.1037/0882-7974.21.2.419

Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14:275–287. https://doi.org/10.1089/ars.2010.3253

Rutter M (2007) Proceeding from observed correlation to causal inference: the use of natural experiments. Perspect Psychol Sci 2:377–395. https://doi.org/10.1111/j.1745-6916.2007.00050.x

Schaie W, Caskle CI (2005) Methodological issues in aging research. In: Teti D (ed) Handbook of research methods in developmental science. Blackwell, Malden, pp 21–39

Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin, Boston

Sonnega A, Faul JD, Ofstedal MB et al (2014) Cohort profile: the health and retirement study (HRS). Int J Epidemiol 43:576–585. https://doi.org/10.1093/ije/dyu067

Weil J (2017) Research design in aging and social gerontology: quantitative, qualitative, and mixed methods. Routledge, New York

Download references

Author information

Authors and affiliations.

Psychology, Philipps University, Marburg, Germany

Martin Pinquart

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Martin Pinquart .

Editor information

Editors and affiliations.

Population Division, Department of Economics and Social Affairs, United Nations, New York, NY, USA

Department of Population Health Sciences, Department of Sociology, Duke University, Durham, NC, USA

Matthew E. Dupre

Section Editor information

Department of Sociology and Center for Population Health and Aging, Duke University, Durham, NC, USA

Kenneth C. Land

Department of Sociology, University of Kentucky, Lexington, KY, USA

Anthony R. Bardo

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Cite this entry.

Pinquart, M. (2021). Experimental Studies and Observational Studies. In: Gu, D., Dupre, M.E. (eds) Encyclopedia of Gerontology and Population Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-22009-9_573

Download citation

DOI : https://doi.org/10.1007/978-3-030-22009-9_573

Published : 24 May 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-22008-2

Online ISBN : 978-3-030-22009-9

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. PPT

    difference between observational study and experimental study

  2. PPT

    difference between observational study and experimental study

  3. What is the difference between observational and experimental study

    difference between observational study and experimental study

  4. Differences Between Experimental Studies and Observational Studies

    difference between observational study and experimental study

  5. Experiment vs Observational Study: Similarities & Differences (2024)

    difference between observational study and experimental study

  6. Difference Between An Experiment And An Observational Study

    difference between observational study and experimental study

VIDEO

  1. Basic difference b/w observational and experimental study

  2. Lesson 1.2: Observational Studies versus Designed Experiments

  3. Research Study Designs

  4. Workshop: Overview of Biomedical Data Sciences and Observational and Experimental Study Designs

  5. AP Stats 4.2a Notes and Example 1: Observational Studies vs Experiments

  6. Algebra 2 Unit 7 Lesson 2 Study Types