SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Back to Entry
  • Entry Contents
  • Entry Bibliography
  • Academic Tools
  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Supplement to Experiment in Physics

Appendix 5: right experiment, wrong theory: the stern-gerlach experiment.

From the time of Ampere onward, molecular currents were regarded as giving rise to magnetic moments. In the nuclear model of the atom the electron orbits the nucleus. This circular current results in a magnetic moment. The atom behaves as if it were a tiny magnet. In the Stern-Gerlach experiment a beam of silver atoms passed through an inhomogeneous magnetic field (Figure 12). In Larmor’s classical theory there was no preferential direction for the direction of the magnetic moment and so one predicted that the beam of silver atoms would show a maximum in the center of the beam. In Sommerfeld’s quantum theory an atom in a state with angular momentum equal to one \((L = 1)\) would have a magnetic moment with two components relative to the direction of the magnetic field, \(\pm eh/4m_e\). (Bohr had argued that only two spatial components were allowed). In an inhomogeneous magnetic field, \(\bH\), the force on the magnetic moment \(\mu\) will be \(\mu_z x\) (Gradient of the magnetic field in the \(z\) direction), where \(\mu_z = \pm eh/4m_e\), where \(e\) is the charge of the electron, \(m_e\) is its mass, \(h\) is Planck’s constant, and \(z\) is the field direction. Thus, depending on the orientation of the magnetic moment relative to the magnetic field there will be either an attractive or repulsive force and the beam will split into two components, exhibiting spatial quantization. There will be a minimum at the center of the beam. “According to quantum theory \(\mu_z\) can only be \(\pm(e/2m_e)(h/2\pi)\). In this case the spot on the receiving plate will therefore be split into two, each of them having the same size but half the intensity of the original spot” (Stern 1921, p. 252, JM) This difference in prediction between the Larmor and Sommerfeld theories was what Stern and Gerlach planned to use to distinguish between the two theories. Stern remarked that “the experiment, if it can be carried out, (will result) in a clear-cut decision between the quantum-theoretical and the classical view” (Stern 1921, FW).

Figure 12

Figure 12. Sketch of the Stern-Gerlach experimental apparatus. The result expected for atoms in an \(L = 1\) state (three components) is shown. From Weinert (1995).

Sommerfeld’s theory also acted as an enabling theory for the experiment. It provided an estimate of the size of the magnetic moment of the atoms so that Stern could begin calculations to see if the experiment was feasible. Stern calculated, for example, that a magnetic field gradient of 10 4 Gauss per centimeter would be sufficient to produce deflections that would give detectable separations of the beam components. He asked Gerlach if he could produce such a gradient. Gerlach responded affirmatively, and said he could do even better. The experiment seemed feasible. A sketch of the apparatus is shown in Figure 12. The silver atoms pass through the inhomogeneous magnetic field. If the beam is spatially quantized, as Sommerfeld predicted, two spots should be observed on the screen. (The sketch shows the beam splitting into three components, which would be expected in modern quantum theory for an atom with angular momentum equal to one). I note that Sommerfeld’s theory was incorrect, illustrating the point that an enabling theory need not be correct to be useful.

Figure 13

Figure 13. The experimental result of the Stern-Gerlach experiment. The beam has split into two components. From Gerlach and Stern (1922a).

A preliminary result reported by Stern and Gerlach did not show splitting of the beam into components. It did, however, show a broadened beam spot. They concluded that although they had not demonstrated spatial quantization, they had provided “evidence that the silver atom possesses a magnetic moment.” Stern and Gerlach made improvements in the apparatus, particularly in replacing a round beam slit by a rectangular one that gave a much higher intensity. The results are shown in Figure 13 (Gerlach and Stern 1922a). There is an intensity minimum in the center of the pattern, and the separation of the beam into two components is clearly seen. This result seemed to confirm Sommerfeld’s quantum-theoretical prediction of spatial quantization. Pauli, a notoriously skeptical physicist, remarked, “Hopefully now even the incredulous Stern will be convinced about directional quantization” (in a letter from Pauli to Gerlach 17 February 1922). Pauli’s view was shared by the physics community. Nevertheless the Stern-Gerlach result posed a problem for the Bohr-Sommerfeld theory of the atom. Stern and Gerlach had assumed that the silver atoms were in an angular momentum state with angular momentum equal to one \((L = 1)\). In fact, the atoms are in an \(L = 0\) state, for which no splitting of the beam would be expected in either the classical or the quantum theory. Stern and Gerlach had not considered this possibility. Had they done so they might not have done the experiment. The later, or new, quantum theory developed by Heisenberg, Schrodinger, and others, predicted that for an \(L = 1\) state the beam should split into three components as shown in Figure 12. The magnetic moment of the atom would be either 0 or \(\pm eh/(4\pi x m)\). Thus, if the silver atoms were in an \(L = 1\) state as Stern and Gerlach had assumed, their result, showing two beam components, also posed a problem for the new quantum theory. This was solved when Uhlenbeck and Goudsmit (1925, 1926) proposed that the electron had an intrinsic angular momentum or spin equal to \(h/4\pi\). This is analogous to the earth having orbital angular momentum about the sun and also an intrinsic angular momentum due to its rotation on its own axis. In an atom the electron will have a total angular momentum \(\bJ = \bL + \bS\), where \(\bL\) is the orbital angular momentum and \(\bS\) is the spin of the electron. For silver atoms in an \(L = 0\) state the electron would have only its spin angular momentum and one would expect the beam to split into two components. Goudsmit and Uhlenbeck suggested the idea of electron spin to explain features in atomic spectra such as the anomalous Zeeman effect, the splitting of spectral lines in a magnetic field into more components than could be accommodated by the Bohr-Sommerfeld theory of the atom. Although the Stern-Gerlach results were known, and would certainly have provided strong support for the idea of electron spin, Goudsmit and Uhlenbeck made no mention of the result.

The Stern-Gerlach experiment was initially regarded as a crucial test between the classical theory of the atom and the Bohr-Sommerfeld theory. In a sense it was, because it showed clearly that spatial quantization existed, a phenomenon that could be accommodated only within a quantum mechanical theory. It decided between the two classes of theories, the classical and the quantum mechanical. With respect to the particular quantum theory of Bohr and Sommerfeld, however, it wasn’t crucial, although it was regarded as such at the time, because that theory predicted no splitting for a beam of silver atoms in the ground state \((L = 0)\). The theory had been wrongly applied. The two-component result was also problematic for the new quantum theory, which also predicts no splitting for an angular momentum zero state and three components for an \(L = 1\) state. Only after the suggestion of electron spin did the Stern-Gerlach result confirm the new theory.

Although the interpretation of the experimental result was incorrect for a time, the result itself remained quite robust through the theory change from the old to the new quantum theory. It is important to remember that experimental results do not change when accepted theory changes, although certainly, as we have seen, their interpretation may change. Gerlach and Stern emphasized this point themselves.

Apart from any theory, it can be stated, as a pure result of the experiment, and as far as the exactitude of our experiments allows us to say so, that silver atoms in a magnetic field have only two discrete values of the component of the magnetic moment in the direction of the field strength; both have the same absolute value with each half of the atoms having a positive and a negative sign respectively (Gerlach and Stern 1924, pp. 690–691, FW)

Experimental results, as well as experiments, also have a life of their own, independent of theory.

Return to Experiment in Physics

Copyright © 2023 by Allan Franklin < allan . franklin @ colorado . edu > Slobodan Perovic < sperovic @ f . bg . ac . rs >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

The Stern-Gerlach experiment revisited

  • Published: 28 October 2016
  • Volume 41 , pages 327–364, ( 2016 )

Cite this article

conclusion of stern gerlach experiment

  • Horst Schmidt-Böcking 1 ,
  • Lothar Schmidt 1 ,
  • Hans Jürgen Lüdde 2 ,
  • Wolfgang Trageser 1 ,
  • Alan Templeton 3 &
  • Tilman Sauer   ORCID: orcid.org/0000-0002-0643-8236 4  

1606 Accesses

22 Citations

29 Altmetric

Explore all metrics

The Stern-Gerlach-Experiment (SGE) performed in 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on the knowledge of today we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for angular momentum quantization in the quantum world and therefore also for the existence of directional quantization of all angular momenta in the process of measurement. Furthermore, it measured for the first time a ground state property of an atom, it produced for the first time a fully “spin-polarized” atomic beam, and it also revealed the electron spin, even though this was not realized at the time. The SGE was the first fully successful molecular beam experiment where the kinematics of particles can be determined with high momentum-resolution by beam measurements in vacuum. This technique provided a kind of new kinematic microscope with which inner atomic or nuclear properties could be investigated. Historical facts of the original SGE are described together with early attempts by Einstein, Ehrenfest, Heisenberg, and others to reveal the physical processes creating directional quantization in the SGE. Heisenberg’s and Einstein’s proposals of an improved multi-stage SGE are presented. The first realization of these proposed experiments by Stern, Phipps, Frisch and Segrè is described. The experimental set-up suggested by Einstein can be considered as an anticipation of a Rabi-apparatus with varying fields. Recent theoretical work by Wennerström and Westlund, by Devereux and others, is mentioned in which the directional quantization process and possible interference effects of the two different spin states are investigated. In full agreement with the results of the new quantum theory directional quantization appears as a general and universal feature of quantum measurements. One experimental example for such directional quantization in scattering processes is shown. Last not least, the early history of the “almost” discovery of the electron spin in the SGE is revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

conclusion of stern gerlach experiment

Otto Stern’s Molecular Beam Method and Its Impact on Quantum Physics

An homage to otto stern.

conclusion of stern gerlach experiment

A Confluence of Ideas and Experiments—A Tribute to Professor Walter Greiner

Aaserud, F. and J.L. Heilbronn. 2013. Love, Literature, and the Quantum Atom . Oxford: Oxford University Press.

Aston, F. 1919. A positive ray spectrograph. Phil. Mag. 38 : 707-714.

Article   Google Scholar  

Bacciagaluppi, G. and A. Valentini. 2009. Quantum Theory at the Crossroads. Reconsidering the 1927 Solvay Conference . Cambridge: Cambridge University Press.

Barnett, S. 1915. Magnetization by Rotation. Phys. Rev. 6 : 239-270.

Article   ADS   Google Scholar  

Bernstein, J. 2010. The Stern-Gerlach Experiment. arXiv:1007.2435 .

Bohm, A. 1993. Quantum Mechanics. Foundations and Applications . New York: Springer.

Bohm, D. 1951. Quantum theory . Englewood Cliffs, NJ: Prentice-Hall.

Bohr, N. 1913a. On the Constitution of Atoms and Molecules. Phil. Mag. 26 (151): 1-25.

Article   MathSciNet   MATH   Google Scholar  

Bohr, N. 1913b. On the Constitution of Atoms and Molecules. Part II. Systems containing only a Single Nucelus. Phil. Mag. 26 (153): 476-502.

Bohr, N. 1913c. On the Constitution of Atoms and Molecules. Part III. Systems containing Several Nuclei. Phil. Mag. 26 : 857-875.

Bohr, N. 1949. Discussion with Einstein on Epistemological Problems in Modern Physics. In Schilpp, P.A., editor, Albert Einstein Philosopher–Scientist , pp. 199-242. La Salle, Ill.: Open Court.

Born, M. 1920. Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen . Berlin (u.a.): Springer.

Compton, A.H. 1921. The magnetic electron. Frank. Inst. J. 192 (2): 145-155.

Dahms, H.-J. 2002. Appointment Politics and the Rise of Modern Theoretical Physics at Göttingen. In Rupke, N., editor, Göttingen and the Development of the Natural Sciences , pp. 143-157. Göttingen: Wallstein.

Darrigol, O. 1992. From “c”-numbers to “q”-numbers: The classical analogy in the history of quantum theory . Berkeley: Univ. of California Press.

Darwin, C. 1928. Free Motion in the Wave Dynamics. Proc. Royal Soc. London A 117 : 258-293.

Article   ADS   MATH   Google Scholar  

Debye, P. 1916. Quantenhypothese und Zeeman-Effekt. Physikalische Zeitschrift 17 (20): 507-512.

Google Scholar  

Dempster, A. 1918. A New Method of Positive Ray Analysis. Phys. Rev. 11 (4): 316-325.

Devereux, M. 2015. Reduction of the atomic wavefunction in the Stern-Gerlach experiment. Can. J. Phys. 93 (11): 1382-1390.

Eckert, M. 2013. Arnold Sommerfeld. Atomphysiker und Kulturbote 1868–1951. Eine Biografie . Göttingen: Wallstein.

Einstein, A. 1905. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17 : 132-148. Reprinted in (Stachel, 1989, Doc. 14, pp. 150–169).

Einstein, A. and P. Ehrenfest. 1922. Quantentheoretische Bemerkungen zum Experiment von Stern und Gerlach. Zeitschrift für Physik 11 : 31-34. Reprinted in (Kormos Buchwald et al., 2012, Doc. 315).

Einstein, A. and W.J. De Haas. 1915. Experimenteller Nachweis der Ampèreschen Molekularströme. Deutsche Physikalische Gesellschaft. Verhandlungen 17 (8): 152-170.

ADS   Google Scholar  

Estermann, I. and O. Stern. 1933a. Über die magnetische Ablenkung von isotopen Wasserstoffmolekülen und das magnetische Moment des “Deutons”. Zeitschrift für Physik 86 : 132-134.

Estermann, I. and O. Stern. 1933b. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons II. Zeitschrift für Physik 85 : 17-24.

Estermann, I. and O. Stern. 1933c. Magnetic moment of the deuton. Nature 133 : 911.

Feynman, R. 1963. The Feynman Lectures on Physics . Addison-Wesley.

Franca, H.M. 2009. The Stern-Gerlach Phenomenon According to Classical Electrodynamics. Foundations Phys. 39 : 1177-1190.

Article   ADS   MathSciNet   MATH   Google Scholar  

French, A. and E.F. Taylor. 1978. An Introduction to Quantum Physics . Boca Raton, FL: CRC Press.

Fricke, H. (n.d.). 150 Jahre Physikalischer Verein Frankfurt a.M. Ljubljana, Yugoslavia: CGB Delo.

Friedrich, B. and D. Herschbach. 1998. Otto Stern’s Lucky Star. Daedalus 127 (1): 165-191.

Friedrich, B. and D. Herschbach. 2003. Stern and Gerlach: How a Bad Cigar Helped Reorient Atomic Physics. Physics Today 56 (12): 53-59.

Friedrich, B. and D. Herschbach. 2005. Stern and Gerlach at Frankfurt: Experimental Proof of Space Quantization. In Trageser, W., editor, Stern-Stunden. Höhepunkte Frankfurter Physik . Frankfurt: University of Frankfurt, Fachbereich Physik.

Frisch, O. and E. Segrè. 1933. Über die Einstellung der Richtungsquantelung. II. Zeitschrift für Physik 80 : 610-616.

Frisch, O. and O. Stern. 1933a. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. Leipziger Vorträge 6 : 36-42.

Frisch, O. and O. Stern. 1933b. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons I. Zeitschrift für Physik 85 : 4-16.

Füßl, W., editor 1998. Der wissenschaftliche Nachlaß von Walther Gerlach . München: Deutsches Museum.

Gerlach, W. 1925. Über die Richtungsquantelung im Magnetfeld II. Annalen der Physik 76 : 163-197.

Gerlach, W. 1969a. Otto Stern zum Gedenken. Physikalische Blätter 25 (9): 412-413.

Gerlach, W. 1969b. Zur Entdeckung des “Stern-Gerlach-Effektes”. Physikalische Blätter 25 (10): 472.

Gerlach, W. and O. Stern. 1921. Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Zeitschrift für Physik 8 : 110-111.

Gerlach, W. and O. Stern. 1922a. Das magnetische Moment des Silberatoms. Zeitschrift für Physik 9 : 353-355.

Gerlach, W. and O. Stern. 1922b. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik 9 : 349-352.

Gerlach, W. and O. Stern. 1924. Über die Richtungsquantelung im Magnetfeld. Annalen der Physik 74 : 673-699.

Gomis, P. and A. Pérez. 2016. Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions. Phys. Rev. A 94 : 012103.

Gordon, J., H. Zeiger, and C. Townes. 1955. The Maser-New Type of Microwave Amplifier, Frequency Standard, and Spectrometer. Phys. Rev. 99 (4): 1264-1274.

Güttinger, P. 1932. Das Verhalten von Atomen im magnetischen Drehfeld. Zeitschrift für Physik 73 : 169-184.

Heinrich, R. and H.-R. Bachmann, editors 1989. Walther Gerlach. Physiker-Lehrer-Organisator . München: Deutsches Museum.

Heisenberg, W. 1922. Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneffekte. Zeitschrift für Physik 8 : 273-297.

Heisenberg, W. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43 (3): 172-198.

Hermansphan, N., H. Haffner, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú and G. Werth. 2000. Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. Phys. Rev. Lett. 84 : 427.

Huber, J.G. 2014. Walther Gerlach (1888–1979) und sein Weg zum erfolgreichen Experimentalphysiker bis etwa 1925 . PhD dissertation, LMU München. dated 6 August 2014.

Inguscio, M. 2006. Comment on the scientific paper no. 6: ‘Oriented atoms in a variable magnetic field’. In Bassani, G., editor, Ettore Majorna. Scientific Papers , pp. 133-136. Bologna, Berlin: Società Italiana di Fisica and Springer.

Kellogg, J., I. Rabi, N. Ramsey and J. Zacharias. 1939. The Magnetic Moments of the Proton and the Deuteron. The Radiofrequency Spectrum of H 2 in Various Magnetic Fields. Phys. Rev. 56 (8): 728-743.

Kormos Buchwald, D., J. Illy, Z. Rosenkranz and T. Sauer, editors (2012). The Collected Papers of Albert Einstein. Vol.13. The Berlin Years: Writings & Correspondence, January 1922–March 1923 . Princeton: Princeton University Press.

Kormos Buchwald, D., J. Illy, Z. Rosenkranz, T. Sauer and O. Moses, editors 2015. The Collected Papers of Albert Einstein. Vol. 14. The Berlin Years: Writings & Correspondence, April 1923–May 1925 . Princeton: Princeton University Press.

Kormos Buchwald, D., Z. Rosenkranz, T. Sauer, J. Illy, V.I. Holmes, editors 2009. The Collected Papers of Albert Einstein. Vol. 12. The Berlin Years: Correspondence, January–December 1921 . Princeton: Princeton University Press.

Kormos Buchwald, D., T. Sauer, Z. Rosenkranz, J. Illy and V.I. Holmes, editors 2006. The Collected Papers of Albert Einstein. Vol. 10. The Berlin Years: Correspondence, May–December 1920; and Supplementary Correspondence, 1909–1920 . Princeton: Princeton University Press.

Kragh, H. 2012. Niels Bohr and the Quantum Atom. The Bohr Model of Atomic Structure 1913–1925 . Oxford: Oxford University Press.

Kuhn, T.S. 1978. Black-body theory and the quantum discontinuity, 1894–1912 . New York: Oxford University Press.

Landé, A. 1921a. Über den anomalen Zeemaneffekt (II. Teil). Zeitschrift für Physik 7 (1): 398-405.

Landé, A. 1921b. Über den anomalen Zeemaneffekt (Teil I). Zeitschrift für Physik 5 (4): 231-241.

Landé, A. 1924. Schwierigkeiten in der Quantentheore des Atombaues, besonders magnetischer Art. Physikalische Zeitschrift 24 (1): 442-444.

Landé, A. 1929. Polarisation von Materiewellen. Die Naturwissenschaften 17 (32): 634-637.

Langmuir, I. 1925. Thermionic Effects Caused by Vapours of Alkali Metals. Proc. Royal Soc. London A 107 : 61-79.

Mackintosh, A.R. 1983. The Stern-Gerlach experiment, electron spin and intermediate quantum mechanics. Eur. J. Phys. 4 : 97-106.

Majorana, E. 1932. Atomi orientati in campo magnetico variabile. Nuevo Cimento 9 : 43-50. No. 6 in “Scientific Papers”, ed. Bassani, 2007.

Article   MATH   Google Scholar  

Mehra, J. and H. Rechenberg, editors 1982. The Historical Development of Quantum Theory. Vol. 1 in 2 parts. The Quantum Theory of Planck, Einstein and Sommerfeld: Its Foundation and the Rise of Its Difficulties 1900–1925 . New York, Heidelberg, Berlin: Springer Verlag.

Nida-Rümelin, M., editor 1982. Bibliographie Walther Gerlach. Veröffentlichungen von 1912–1979 . München: Deutsches Museum.

Parson, A. 1915. A Magneton Theory of the Structure of the Atom. Smithsonian Miscellaneous Collections 65 (11): 1-80. issued November 29, 1915, volume is dated 1916.

Pauli, W. 1979. Wissenschaftlicher Briefwechsel mit Bohr, Einstein Heisenberg u.a. Band 1: 1919–1929 . New York: Springer.

Phipps, T.E. and O. Stern. 1932. Über die Einstellung der Richtungsquantelung. Zeitschrift für Physik 73 : 185-191.

Pié i Valls, B. 2015. L’experiment d’Stern i Gerlach en el seu context teòric: la història d’una reorientació . Ph.D. thesis, Universitat de Barcelona. English summary and conclusions in Chap. 7, pp. 209-222.

Planck, M. 1899. Über irreversible Strahlungsvorgänge (Fünfte Mittheilung/Schluss). Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte 25 : 440-480.

MATH   Google Scholar  

Platt, D.E. 1990. A modern analysis of the Stern-Gerlach experiment. Amer. J. Phys. 60 (4): 306-308.

Popper, K. 1982. Quantum theory and the schism in physics . Totowa, NJ: Rowman and Littlefield (From the “Postscript to the Logic of Scientific Discovery”, pp. 22-23).

Popper, K. 1989. The Logic of Scientific Discovery .: Hutchinson.

Rabi, I. 1929. Zur Methode der Ablenkung von Molekülstrahlen. Zeitschrift für Physik 54 : 190-197.

Rabi, I., J. Kellogg and J. Zacharias. 1934. The Magnetic Moment of the Proton. Phys. Rev. 46 (3): 157-163.

Rabi, I., S. Millman, P. Kusch and J. Zacharias. 1939. The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments. The Magnetic Moments of 3Li6, 3Li7 and 9F19. Phys. Rev. 55 (6): 526-535.

Reinisch, G. 1999. Stern-Gerlach experiment as the pioneer – and probably the simplest – quantum entanglement test? Phys. Lett. A 259 : 427-430.

Ribeiro, J.E.A. 2010. Was the Stern-Gerlach Phenomenon Classically Described? Foundations Phys. 40 : 1779-1782.

Sackur, O. 1911. Die Anwendung der kinetischen Theorie der Gase auf chemische Probleme. Annalen der Physik 36 : 958-980.

Sackur, O. 1913. Die universelle Bedeutung des sog. elementaren Wirkungsquantums. Annalen der Physik 40 : 67-86.

Sauer, T. 2016. Multiple Perspectives on the Stern-Gerlach Experiment. In Sauer, T. and Scholl, R., editors, The Philosophy of Historical Case Studies , pp. 251-263. Springer.

Schmidt, L., C. Goihl, D. Metz, H. Schmidt-Böcking, R. Dörner, S. Ovchinnikov, J. Macek and D. Schultz. 2014. Vortices Associated with the Wave Function of a Single Electron Emitted in Slow Ion-Atom Collisions. Phys. Rev. Lett. 112 : 083201.

Schmidt-Böcking, H. and K. Reich. 2011. Otto Stern. Physiker, Querdenker, Nobelpreisträger . Frankfurt/Main: Societäts-Verlag.

Schütz, W. 1969. Persönliche Erinnerungen an die Entdeckung des Stern-Gerlach-Effektes. Physikalische Blätter 25 (8): 343-345.

Schwinger, J. 2001. Quantum mechanics: symbolism of atomic measurements. Edited by Bertold-Georg Englert . Berlin: Springer.

Scully, M.O., Lamb, Willis E., J., and A. Barut. 1987. On the Theory of the Stern-Gerlach Apparatus. Foundations Phys. 17 (6): 575-583.

Article   ADS   MathSciNet   Google Scholar  

Scully, M.O., R. Shea, and J. McCullen. 1978. State reduction in quantum mechanics: a calculational example. Phys. Rep. 43 (13): 485-498.

Segrè, E. 1993. A mind always in motion. The autobiography of Emilio Segrè . Berkeley: University of California Press.

Sommerfeld, A. 1916. Zur Theorie des Zeeman-Effekts der Wasserstofflinien, mit einem Anhang über den Stark. Physikalische Zeitschrift 17 (20): 491-507.

Sommerfeld, A. 1920a. Allgemeine spektroskopische Gesetze, insbesondere ein magnetooptischer Zerlegungssatz. Annalen der Physik 63 : 221-263.

Sommerfeld, A. 1920b. Ein Zahlenmysterium in der Theorie des Zeeman-Effektes. Die Naturwissenschaften 8 (4): 61-64.

Sommerfeld, A. 1921. Atombau und Spektrallinien . Braunschweig: Vieweg.

Sommerfeld, A. 1924. Atombau und Spektrallinien . Braunschweig: Vieweg.

Stern, O. 1920a. Eine direkte Messung der thermischen Molekulargeschwindigkeit. Zeitschrift für Physik 2 : 49-56.

Stern, O. 1920b. Eine direkte Messung der thermischen Molekulargeschwindigkeit. Physikalische Zeitschrift 21 : 582.

Stern, O. 1920c. Nachtrag zu meiner Arbeit: “Eine direkte Messung der thermischen Molekulargeschwindigkeit”. Zeitschrift für Physik 3 : 417-421.

Stern, O. 1921. Ein Weg zur experimentellen Prüfung der Richtungsquantelung. Zeitschrift für Physik 7 : 249-253.

Stuewer, R.H. 1975. The Compton effect: turning point in physics . New York: Science History Publications.

Tetrode, H. 1912a. Die chemische Konstante der Gase und das elementare Wirkungsquantum. Annalen der Physik 38 : 434-442.

Tetrode, H. 1912b. Die chemische Konstante der Gase und das elementare Wirkungsquantum II. Annalen der Physik 39 : 255-256.

Toennies, J.P., H. Schmidt-Böcking, B. Friedrich and J.C. Lower. 2011. Otto Stern (1888–1969): The founding father of experimental atomic physics. Annalen der Physik 523 (12): 1045-1070.

Tomonaga, S.-I. 1997. The Story of Spin . Chicago: The University of Chicago Press.

Trageser, W. 2011. Der Stern-Gerlach-Effekt. Genese, Entwicklung und Rekonstruktion eines Grundexperimentes der Quantentheorie 1916–1926 . Ph.D. Thesis, Johann Wolfgang Goethe-Universität Frankfurt.

Unna, I. and T. Sauer. 2013. Einstein, Ehrenfest, and the quantum measurement problem. Annalen der Physik 525 (1-2): A15-A19.

Weinert, F. 1995. Wrong Theory – Right Experiment: The Significance of the Stern-Gerlach Experiments. Stud. Hist. Phil. Mod. Phys. 26 (1): 75-86.

Wennerström, H. and P. Westlund. 2012. The Stern-Gerlach experiment and the effects of spin relaxation. Phys. Chem. Chem. Phys. 14 : 1677-1684.

Wennerström, H. and P. Westlund. 2013. On Stern-Gerlach coincidence measruements and their applications to Bell’s theorem. Physics Essays 26 : 174-180.

Wennerström, H. and P. Westlund. 2014. Interpretation versus explanation in the description of the Stern-Gerlach experiment. preprint.

Zeeman, P. 1896. Over den Invloed eener Magnetisatie op den Aard van het door een Stof uitgezonden Licht. Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings .

Zeeman, P. 1897. On the Influence of Magnetism on the Nature of the Light Emitted by a Substance. Phil. Mag. 43 : 226-239.

Download references

Author information

Authors and affiliations.

Institute for Nuclear Physics, Goethe-University, 60438, Frankfurt, Germany

Horst Schmidt-Böcking, Lothar Schmidt & Wolfgang Trageser

Institute for Theoretical Physics, Goethe-University, 60438, Frankfurt, Germany

Hans Jürgen Lüdde

Oakland, CA, USA

Alan Templeton

Institute of Mathematics, Johannes Gutenberg-University, 55099, Mainz, Germany

Tilman Sauer

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Horst Schmidt-Böcking .

Rights and permissions

Reprints and permissions

About this article

Schmidt-Böcking, H., Schmidt, L., Lüdde, H.J. et al. The Stern-Gerlach experiment revisited. EPJ H 41 , 327–364 (2016). https://doi.org/10.1140/epjh/e2016-70053-2

Download citation

Received : 02 September 2016

Revised : 14 September 2016

Published : 28 October 2016

Issue Date : November 2016

DOI : https://doi.org/10.1140/epjh/e2016-70053-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. How the Stern–Gerlach experiment made physicists believe in quantum

    conclusion of stern gerlach experiment

  2. Stern Gerlach Experiment

    conclusion of stern gerlach experiment

  3. PPT

    conclusion of stern gerlach experiment

  4. Stern–Gerlach experiment

    conclusion of stern gerlach experiment

  5. Solved In the Stern-Gerlach experiment a beam of silver

    conclusion of stern gerlach experiment

  6. PPT

    conclusion of stern gerlach experiment

VIDEO

  1. STERN GERLACH EXPERIMENT।। STERN GERLACH EXPERIMENT IN HINDI।।

  2. Modern Physics (Stern-Gerlach Ex#2) Part 8

  3. LECTURE 27

  4. The Stern-Gerlach experiment :An electron is not a sphere and does not rotate around itself

  5. Stern gerlach experiment

  6. Stern–Gerlach experiment part1 آزمایش اشترن گرلاخ 1 8 690

COMMENTS

  1. Stern-Gerlach experiment

    Stern-Gerlach experiment. Stern-Gerlach experiment: Silver atoms travelling through an inhomogeneous magnetic field, and being deflected up or down depending on their spin; (1) furnace, (2) beam of silver atoms, (3) inhomogeneous magnetic field, (4) classically expected result, (5) observed result. Part of a series of articles about.

  2. How does Stern-Gerlach experiment lead to conclusion of electron's spin?

    The Stern-Gerlach experiment is about angular momentum in general, not particularly about the electron spin.. The Stern-Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantized. Thus an atomic-scale system was shown to have intrinsically quantum properties.In the original experiment, silver atoms were sent through a spatially varying magnetic field, which ...

  3. PDF Contents Stern-Gerlach Experiment

    The Stern-Gerlach experiment uses atoms of silver. Silver atoms have 47 electrons. Forty-six of them fill completely the n = 1, 2, 3, and 4 levels. The last electron is an n = 5 electron with zero orbital angular momentum (a 5s state). The only possible angular momentum is the intrinsic angular

  4. Stern-Gerlach experiment

    Stern-Gerlach experiment, demonstration of the restricted spatial orientation of atomic and subatomic particles with magnetic polarity, performed in the early 1920s by the German physicists Otto Stern and Walther Gerlach.In the experiment, a beam of neutral silver atoms was directed through a set of aligned slits, then through a nonuniform (nonhomogeneous) magnetic field (see Figure), and onto ...

  5. Appendix 5: Right Experiment, Wrong Theory: The Stern-Gerlach Experiment

    The Stern-Gerlach experiment was initially regarded as a crucial test between the classical theory of the atom and the Bohr-Sommerfeld theory. In a sense it was, because it showed clearly that spatial quantization existed, a phenomenon that could be accommodated only within a quantum mechanical theory. It decided between the two classes of ...

  6. PDF The Stern-Gerlach Experiment

    in a Stern-Gerlach experiment, then one could conclude that the angular momentum quantum number associated with the magnetic moment responsible for the deflection is 4−1 2 = 3 2. Turning now to the present experiment in which a beam of potassium atoms passes through an inhomo-geneous field, we note first that the total angular mo-

  7. The (Often) Overlooked Experiment That Revealed the Quantum World

    In 1922, the German physicists Otto Stern and Walther Gerlach demonstrated that the behavior of atoms was governed by rules that defied expectations — an observation that cemented the still-budding theory of quantum mechanics. "The Stern-Gerlach experiment is an icon — it's an epochal experiment," said Bretislav Friedrich, a physicist ...

  8. The Stern-Gerlach experiment revisited

    The Stern-Gerlach-Experiment (SGE) performed in 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on the knowledge of today we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for ...

  9. PDF THE STERN-GERLACH EXPERIMENT

    RE-EXAMINED BY AN EXPERIMENTER. The historic Stern-Gerlach experiment (SGE), which was performed in 1922 in Frankfurt, is reviewed from an experimental point of view. It is shown that the SGE apparatus is a purely classical momentum spectrometer, in which the trajectories of particles are measured.

  10. PDF Stern-Gerlach experiments: past, present, and future

    In 1922 Otto Stern and Walter Gerlach published a paper (Gerlach, 1922) about the experiment that they had just performed at the University of Frankfurt. The experiment consisted in the deflection of a beam of neutral silver atoms through the poles of an inhomogeneous magnet. Ever since, the Stern-Gerlach experiment has been the subject of ...